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Receiver operating characteristics of perceptrons: Influence of sample size and prevalence
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In many practical classification problems it is important to distinguish false positive from false negative
results when evaluating the performance of the classifier. This is of particular importance for medical diag-
nostic tests. In this context, receiver operating characteristic~ROC! curves have become a standard tool. Here
we apply this concept to characterize the performance of a simple neural network. Investigating the binary
classification of a perceptron we calculate analytically the shape of the corresponding ROC curves. The
influence of the size of the training set and the prevalence of the quality considered are studied by means of a
statistical-mechanics analysis.@S1063-651X~99!06911-1#

PACS number~s!: 87.10.1e, 07.05.2t, 05.90.1m
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I. INTRODUCTION

Classification problems in general and medical diagno
tests in particular are often well suited for the application
neural networks@1–3#. The rule how to classify an item i
generally not available, but can be derived from examp
e.g., patients with a known clinical status. The task for
network is to learn from these examples, i.e., to extract
implicit information in order to classify other items. We fo
cus on medical diagnostic tests, where the aim is to discr
nate between absence and presence of a certain disea
risk, yet our analysis is not restricted to this domain.

To gain further insight into the applicability of the neur
network approach in a clinical setting we calculated the
quired size of the training set in relation to the prevalence
the disease considered. For this purpose we provide ana
cal expressions for the influence of prevalence on the sh
of receiver operating characteristic curves.

II. DEFINITION OF DESCRIPTIVE MEASURES

For the evaluation of a diagnostic test, it is often impo
tant to distinguish false positive from false negative resu
In this case the so-called generalization error as define
the context of learning theory is not sufficient to assess
validity of the test.

A common way to summarize the results of a medical t
is to list the frequencies of positive and negative test res
in a 232 cross table where the columns correspond to
clinical status of the patients~see Table I!. In the following
we use the convention that all frequencies are counted r
tively to the total number of patients, i.e.,a1b1c1d51.

From the cross table one defines the ratios

u15
a

a1c
, v15

a

a1b
,

~1!

u25
d

b1d
, v25

d

c1d
,

which are standard measures to describe the performan
a medical diagnostic test. Thesensitivity u1 gives the per-
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centage of correctly classified diseased persons. Thus, a
sitivity of 100% means that any occurrence of the diseas
detected by the test. Thespecificity u2 gives the analog ratio
of the correctly classified persons without the disea
Whereas sensitivity and specificity have a more global me
ing, physicians might be more interested in the ratios ta
with respect to the rows. If the test is positive, thepositive
predictive valuev1 gives the probability to have the diseas
The negative predictive valuev2 tells the reliability of a
negative test result. The fraction of diseased persons in
sample is calledprevalence,

l5a1c. ~2!

Usually, diagnostic tests yield a continuous valued qu
tity which is compared to a threshold value for binary cla
sification. By varying this threshold, the test can be ma
more or less stringent to meet given requirements with
spect to sensitivity or specificity.

A more stringent test gives high specificity, i.e., the fra
tion of correctly classified healthy persons is high. On t
other hand, an increase in specificity usually results in a l
of sensitivity, i.e., more persons with the disease are mis

This trade-off between specificity and sensitivity is d
scribed by the receiver operating characteristic~ROC!
curve. An ROC curve is the plot of a test’s true positive ra
i.e., the fractionyROC5a/(a1c) of correctly classified per-
sons with the disease, as a function of its false positive r

TABLE I. Cross table containing the relative frequencies
positive and negative test results subdivided with respect to
clinical status~disease vs no disease or risk vs no risk!. a depicts
correctly classified diseased persons,d represents correctly class
fied normals.b1c gives the fraction of false classifications, whic
is often referred to asgeneralization error.

Clinical status
With disease Without disease

positive a b
Test result negative c d
5926 © 1999 The American Physical Society
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PRE 60 5927RECEIVER OPERATING CHARACTERISTICS OF . . .
the fraction xROC5b/(b1d) of misclassified healthy per
sons. Using the definitions~1!, it is obvious thatyROC5u1

andxROC5(12u2).
Each point on the ROC curve corresponds to a cer

stringency level of the test. If a diagnostic test makes exc
sively positive classifications, the true positive rate is 1,
the same applies to the false positive rate. The correspon
point on the ROC curve is the upper right corner,yROC
5xROC51. In the opposite extreme, there are no posit
classifications and therefore one hasyROC5xROC50.

For a test without predictive power, the ratio betwe
positive classified persons with and without disease would
the same as the corresponding ratio of the whole test po
lation; in this case one has

a

b
5

a1c

b1d

and the ROC curve follows the diagonalyROC5xROC. Any
meaningful test should yield an ROC curve above this di
onal. By changing the threshold value of the test, one obt
a curve extending between the two cornersyROC5xROC50
andyROC5xROC51.

The given conditions in medical practice often require
certain level of specificity for a test to be useful. If one thin
of a risky or cost expensive treatment, it is clear that
fraction of misclassified healthy persons should not excee
certain limit. On the other hand, a diagnostic test sho
achieve some minimal value of sensitivity in order to
effective. Since ROC curves display precisely this interpl
they can be used to determine the threshold value for a
tain diagnostic test. Additionally, ROC curves allow f
comparison of several tests at the same level of specific
For a detailed discussion of the use of ROC curves see
instance,@4# and references therein.

III. DATA MODEL

In our analysis, each patient is represented by
N-dimensional feature vectorSPRN. Each component o
this vector can be thought of as a clinically relevant meas
which characterizes the patient~e.g., blood pressure, hea
rate!. The patient’s clinical status is coded by the bina
quantityS0, whereS0511 meanswith andS0521 means
without disease.

Let us now assume, that diseased constellations in fea
space can be separated from the healthy ones b
(N21)-dimensional hyperplane. This means, that the ac
statusS0 of a patient with feature vectorS is given by

S05sgn~B•S2u!, ~3!

whereBPRN, B251, is a unit-vector perpendicular to th
hyperplane; for obvious reasonsB is called therule vector.u
is related to the prevalence, i.e., the fraction of actually d
eased individuals. The components ofS are taken to be
Gaussian distributed with zero mean and unit variance, th
fore the overlapy5B•S of the feature vectors with the rul
is Gaussian distributed as well,
in
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p~y!5
1

A2p
expS 2

1

2
y2D . ~4!

Note that in case of largeN, Eq. ~4! holds true under more
general conditions according to the central limit theore
Given the distribution~4! of y, the thresholdu is related to
the prevalence through

l5F~u!, with F~x!5
1

A2p
E

2`

x

dt expS 2
1

2
t2D .

~5!

IV. ROC CURVES OF A PERCEPTRON

In this section we consider a perceptron with fixed weig
vector JPRN, J251. As does the rule vector,J defines a
hyperplane in the feature space, and

s5sgn~J•S2g! ~6!

is the test result for the patientS. We use the overlapR
5J•B as the usual measure for the perceptron’s knowle
about the rule. For a givenR, the projectionx5J•S of a
feature vector on the perceptron vectorJ and the projection
y5B•S on the rule vector are jointly Gaussian distribut
according to

p~x,y!5
1

2pA12R2
expS 2

1

2

x222Rxy1y2

12R2 D . ~7!

In order to plot the ROC curves for the perceptron class
cation, we need to know the entries of the respective cr
table. If we want to calculate, sayb, which is the relative
frequency of@(S0521)`(s511)#, we have to perform
the average ofQ(2S0)Q(1s) over the distribution of fea-
ture vectorsS. SinceS enters only through the scalar prod
uctsx andy, we arrive in an average over Eq.~7!,

b5E
g

`

dxE
2`

u

dy p~x,y!

5
1

A2p
E

g

`

dx expS 2
1

2
x2DFS u2Rx

A12R2D
5:C~g,u,R!. ~8!

All other entries of the cross table can be calculated in
same way and hence can be expressed through the fun
C defined in Eq.~8!,

a5C~g,2u,2R!, c5C~2g,2u,R!,
~9!

and d5C~2g,u,2R!.

This allows us to express the quantities in Eq.~1! in terms of
the perceptron thresholdg, the biasu which is related to the
prevalence~5!, and the overlapR,
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FIG. 1. ROC curves of perceptrons with overlapsR50.1,0.2, . . . ,0.9 ~both panels!; higher values ofR give larger areas under the curve
For the left-hand panel the prevalence was set tol550%, in the right-hand panel tol51%. For a prevalence of 50%, the curves a
symmetric with respect to the line (0,1)2(1,0), which reflects the symmetry betweendiseasedandhealthyin this case.
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u15
C~g,2u,2R!

F~u!
, v15

C~g,2u,2R!

F~g!
,

~10!

u25
C~2g,u,2R!

F~2u!
, v25

C~2g,u,2R!

F~2g!
.

For given external conditions, i.e.,u andR fixed, the perfor-
mance measures in Eqs.~10! can only be tuned relative to
each other by the choice of the perceptron thresholdg. A
higher value ofg gives less positive classifications@cf. Eq.
~6!# and therefore an increase ofu2 with a concomitant de-
crease ofu1 .

The plot ofu1 , i.e., the fraction of positive classification
among the diseased persons, versus (12u2), the fraction of
positive classifications in the healthy subgroup, gives
ROC curve.

As g→1` there are no positive test results and the
spective point on the ROC curve is the lower left cornerg
→2` equivalently corresponds to the upper right corn
For finiteg the value ofR determines the path in between th
corners. The higher the value ofR, the higher the sensitivity
at a certain specificity and the larger the area under the cu

Figure 1 presents ROC curves for two different prev
lences~1% and 50%! and several values ofR. In comparing
the two plots, we find that a perceptron with a certain over
R reaches higher sensitivities for all specificities when th
are less patients with disease than without disease. The R
curves for the casel51% are steeper than the ones forl
550%. On the other hand, it should be harder for the p
ceptron to achieve a certain knowledge about the rule
there are less examples of one group at a fixed total am
of training examples.

V. LEARNING FROM A TRAINING SET

Up to now, we have considered a perceptron with fix
weightsJ and a certain overlapR with the rule. The aim of
this section is to include a learning process into the analy
The perceptron gains knowledge about the rule by learn
from examples provided in the training set. Consequen
we shall analyze the influence of the size of the training
e
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and the prevalence of the quality considered to the per
mance of the perceptron. This means we have to calcu
the quantityR as a function of the total numberP of training
examples and the relative frequency of the labelS0511.
Finally, this gives us access to the desired accuracy meas
defined in the previous sections.

We apply the standard statistical mechanics approach
consider the components of the perceptron weight vectorJ as
the N degrees of freedom of a physical system with ener

H~J!5 (
m51

P

Q~2smS0
m!5 (

m51

P

Q@2~J•Sm2g!~B•Sm2u!#,

~11!

where the sum extends over all feature vectorsSm in the
training set. The thresholdg is considered to be fixed durin
the training process.

In an ensemble of perceptrons at formal temperature 1b,
a configurationJ occurs with the corresponding Gibbs
Boltzmann density, hence the termGibbs learninghas been
coined for this scenario@5#. The quenched average over th
randomness contained in the training data is performed u
the replica method assuming replica symmetry. A sketch
the calculation is given in the appendix.

The limit b→` forces the system into its ground stat
For g5u the energy of the ground state isH50, indepen-
dent of a5P/N. This corresponds to an error-free classi
cation of a training set of any size. In the limitN→` with
finite normalized sample sizea5P/N, u can be determined
exactly from the prevalence andg5u is a valid choice for
the perceptron threshold during training. Since we exp
that this choice already gives the largest achievable ove
within the framework of Gibbs learning, we proceed witho
an explicit optimization of the learning strategy with respe
to g for given u, and useg5u instead. Note that this par
ticular choice ofg is only used to describe a specific trainin
process and does not affect the role of the threshold as
scribed in the preceding sections.

The overlapR defined in Sec. IV now plays the role of a
order parameter. Together with the quantityq, which repre-
sents the typical overlap of two error free perceptron vect
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FIG. 2. On the left-hand panel, the overlapR of the perceptron vectorJ with the rule vectorB is plotted as a function of the ratioa
5P/N. The individual curves correspond to the prevalencesl50.01, 0.05, 0.10, 0.25, and 0.50 from bottom to top. Before having seen
example, i.e., ata50, J is perpendicular toB and the curves start atR50 in any case. With increasinga, R increases and approache
asymptotically the value 1 asa→`. For a fixeda the largest value ofR is achieved when both classes have equal weights, i.el
50.50. Nevertheless, only very asymmetric class weights cause pronounced reducements. This can also be seen from the right-h
the figure. Here the value ofa required for a fixed overlap (R50.8) is plotted against the prevalence~solid line!. Whereas the curve is rathe
flat in the center region, it grows dramatically asl→0 or l→1. For comparison, the dotted line shows the value ofa required to obtain the
same number of examples in the smaller of the subgroups as there are forl50.50.
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~A2!, it is sufficient to describe the properties of the syst
in the thermodynamic limitN→`.

In analogy to the caseg5u50, which was studied in@6#,
one can argue that the unknown vectorB coincides with
equal probability with any error freeJ. As a consequence th
relation q5R holds true, which would be violated in mor
general settings withgÞu.

The remaining saddle point conditiondG/dR50 @cf. Eq.
~A4!# yields the so-called learning curve, i.e.,R in depen-
dence ofa. Figure 2 displays such learning curves for d
ferent values ofu. As intuitively clear, the more example
are provided, the better the rule is captured by the perc
tron. This works best if there are equal numbers of examp
of both classification types. In case of very few examples
one of the classes, i.e., for prevalences far away from
balancel550%, it takes a huge total amount to gain know
edge about the rule. Nevertheless, for ratios from aboul
510% up tol590% there is a remarkably weak depe
dence ofa on the prevalence.

A rough but widely used approximation for the depe
dence of the required sample size on the prevalence is g
by the statement, that the smaller subgroup determines
actual sample size. This implies the dependenceã}1/l for
l,0.50, since the normalized number of examples of
smaller group is given by (al), in this case. Equivalently
the dependence should beã}1/(12l) in the casel
.0.50. The right-hand graph of Fig. 2 shows the value oa
necessary to obtain a certain overlap (R50.8) as a function
of l; for comparison,ã is plotted as well. As expected th
approximationã overestimates the actually needed sam
size for any value ofl.

VI. HOW MUCH TRAINING DATA IS NECESSARY?

The relation betweenR, u, anda as derived in the pre
ceding section allows for a quantitative description of t
influence of sample size and disease prevalence on the
formance of a perceptron. As discussed in Sec. II, a quan
of interest might be the sensitivity of a test at a given spe
p-
s
r
e

-
en
he

e

e

er-
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ficity, i.e., the ordinate of the ROC curve at fixed abscis
(12u2).

Proceeding on a given prevalence the overlapR can be
calculated for any value ofa ~cf. Sec. V!. From this, the
perceptron thresholdg, which yields the desired specificit
can be determined by using the ROC equations~10!. Finally,
by using Eq.~10! again, one obtains the sensitivity as a fun
tion of the normalized sizea5P/N of the training set. This
dependence is shown in Fig. 3. The corresponding posi
predictive values, which are also presented in Fig. 3, can
obtained the same way.

From graphs like the ones in Fig. 3 one can easily read
required size of the training set for a desired test perf
mance. Additionally, such graphs may indicate regio
where further collection of training examples gives only n
glectable improvements to the test performance. The la
applies especially with respect to the positive predictive v
ues.

VII. DISCUSSION

We applied the concept of ROC curves to describe
performance of a perceptron that realizes a threshold cla
fication. For this, we revisited the thoroughly studied sc
nario where the perceptron learns from examples class
by a rule, which is of the same architecture as the percep
itself ~see, for instance,@1,5–8# and references therein!.

Investigating the shape of ROC curves of a percept
with fixed overlapR, we observed a pronounced dependen
of sensitivity and specificity on the prevalence of the qua
considered~cf. Fig. 1!. This seems to contradict the fre
quently encountered statement that these quantities shou
prevalence independent measures of validity, which is ba
on their definition by means of the cross table. It is importa
to realize that this predication refers to ROC curves obtai
from differently composed validation sets for exactly t
same classification problem. But even in this sense, the s
ment does not necessarily apply to realistic situations as
cussed in@9#.

By introducing the biasu in the rule, we extended the



dividual
t fixed
hout

isplayed

5930 PRE 60FREKING, BIEHL, BRAUN, KINZEL, AND MEESMANN
FIG. 3. Variation of the perceptron performance with increasing size of the training set. As in the left-hand panel of Fig. 2 the in
curves of both plots correspond tol50.01, 0.05, 0.10, 0.25, and 0.50 from bottom to top. The graph on the left shows the sensitivity a
specificity (u250.95). The sensitivity ata50 is common to all curves. This is due to the fact that the ROC curve for a test wit
predictive power is given by the line of identity; the value 5% just reflects the considered specificity level of 95%. Thea dependence of the
sensitivity looks very similar to the shape of the learning curves shown in Fig. 2. The corresponding positive predictive values are d
in the right-hand panel; the values ata50 coincide with the respective values of the prevalence. The increase inv1 becomes astonishingly
slow, yet all curves tend to 1 asa→`.
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analysis in@6# to situations where items of the two subgrou
occur with different frequencies. Combining the results
this statistical-mechanics approach with standard meas
of validity as defined in the context of biomedical statistic
we described analytically the influence of sample size
disease prevalence on the performance of a diagnostic te
is hoped that this theoretical knowledge allows for more
fective planning of clinical studies.

Our work is based on simple, yet rather general assu
tions on the underlying data distribution and the classifi
tion scheme. Naturally, real world problems are more co
plicated in many respects. They are usually not comple
learnable since the architecture of the rule is not known
addition, classification tasks in practice will be affected
noise, i.e., the feature vectors can contain inaccurately m
sured values or the example classifications might be wr
themselves. The considered ideal training situation provi
first insights and we expect the results to hold qualitatively
a wider range of settings. In particular, earlier studies of
perceptron have shown that the presence of noise does
prohibit the success (R→1) of appropriate training scheme
in principle @6,10,11#. Nevertheless, further research shou
incorporate such more realistic situations, including noni
tropic data distributions and more complicated classificat
schemes which require, for instance, the use of multila
networks.
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APPENDIX

The partition function corresponding to Eq.~11! reads

Z5S )
j 51

N E dJj D dS (
j 51

N

Jj
221D expF2b(

m
Q~2Em!G ,

~A1!
f
es
,
d
. It
-

p-
-
-
ly
n

a-
g
s

n
e
not

-
n
r

s.
e-

where

Em5~J•Sm2g!sgnFm, with Fm5~B•Sm2u!.

The quenched free energy21/b^ ln Z& can be performed us
ing the identity

^ ln Z&5 lim
n→0

]

]n
^Zn&.

For integern, Zn is the partition function of ann-fold rep-
licated system. Its average can be calculated by means
saddle point integration and involves the order paramete

Ra5Ja
•B and qab5Ja

•Jb for aÞb. ~A2!

Herea,b51, . . . ,n denote the replica indices.
In analogy to@6# we assume replica symmetry, i.e.,Ra

5R for all a andqab5q for all aÞb. Within this simplify-
ing scheme it is straightforward to identify the solution in t
limit n→0. We obtain, forb→`, the quenched free energ

G5
]

]n U
n50

^Zn&
N

5
q2R2

2~12q!
1

1

2
ln~12q!

1aE
2`

` dx

A2p
expS 2

x2

2 D E
2`

` dF

A2p

3expF2
~F1u!2

2 G
3 ln FFxAq2R21uFuR2~g2uR!sgnF

A12q
G . ~A3!

Further, we restrict the analysis to the caseg5u. As dis-
cussed in the text, the relationq5R is satisfied in this case
and one obtains the simplified free energy
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G5
1

2
@R1 ln~12R!#1aA12R

R E
2`

` dt

A2p
FexpS t2

Q

AR
D 1expS t1

Q

AR
D GFS tA R

12RD lnFS tA R

12RD . ~A4!
s
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